Demand Systems Adding Up

TheoryGuru applications

(c) Copyright 2016 by JMJ Economics

Load Economicreasoning package only if it is not already loaded

If[Length@Names["PLTools`*"] < 10, Get["http://economicreasoning.com"]]

Notes

 $\nabla u[x], x, p, h_i, s, \epsilon H_i$ are each automatically recognized as vectors with length equal to the number of commodities. That number must not be less than one but is otherwise arbitrary.

In the Wolfram Language, x.y refers to the tensor DOT PRODUCT, NOT scalar multiplication. For TheoryGuru purposes, tensor means vector, so that the result of x.y is a scalar.

Setup

Consumer first-order conditions, as a vector equation

```
\nabla u[x] = \lambda p;
```

nonsatiation = $\{\lambda > 0, \text{ income } > 0\};$

Differentiate it with respect to p_i

dutility = $\nabla u[x] \cdot h_i = 0$; (* h_i is a vector of impacts of p_i on each Hicksian quantity choice *)

Definition of price elasticities

```
defineelas = p.h<sub>i</sub> == income s.eH<sub>i</sub>;
(* eH<sub>i</sub> is a vector of the (Hicksian) elasticity
  of each quantity demanded with respect to p<sub>i</sub> *)
```

Result: "Adding up"

```
TheoryGuru[{dutility, defineelas, nonsatiation}, s.\epsilonH<sub>i</sub> == 0]
True
TheorySpace[]
Using MostRecentTheory.
{income, \lambda, p.p, p.s, p.h<sub>i</sub>, p.\epsilonH<sub>i</sub>, s.s, s.h<sub>i</sub>, s.\epsilonH<sub>i</sub>, h<sub>i</sub>.h<sub>i</sub>, h<sub>i</sub>.\epsilonH<sub>i</sub>, \epsilonH<sub>i</sub>, \epsilonH<sub>i</sub>.\epsilonH<sub>i</sub>}
p, s, h<sub>i</sub>, \epsilonH<sub>i</sub> are interpreted as vectors.
```

Variable interpretations

Element-by-element notation with 4 goods