Furman ratio without Cobb-Douglas

For discrete changes in the capital-income tax rate.

TheoryGuru applications

(c) Copyright 2019 by JMJ Economics

Background

Obama administration economists Furman and Summers claimed that only a fraction of the revenue loss from a corporate tax cut benefits labor. But the standard supply and demand model, which for these purposes is a generalization of long run behavior in the neoclassical growth model, says the opposite.

Here we prove that by machine, without assuming any functional form for the aggregate production function. \(k \) denotes the aggregate capital stock, \(f[k] \) aggregate output gross of depreciation (the aggregate quantity of labor is fixed), and \(\tau \) the capital-income tax rate.

Setup

\(\text{In[___]} \) \text{Get}"http://economicreasoning.com"

\textbf{Proof & Logic Tools 6.3}

(c) Copyright 2016, 2017, 2018, 2019 by JMJ Economics

Type **ERCommands** for a list of commands in the package.

Introduction to Automated Economic Reasoning

<table>
<thead>
<tr>
<th>Tutorials:</th>
<th>Entering calculus</th>
<th>General Mathematica tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get started</td>
<td>Load extras</td>
<td>Browse examples</td>
</tr>
</tbody>
</table>

Definitions

\(\text{In[___]} \) \text{laborincome[k__]} = f[k] - f'[k] k \)

\(\text{Out[___]} \) \text{f[k] - k f'[k]} \)
$$
\text{lr capitalequilibrium}[\tau, k] := (\text{willingness to pay for capital } \ast) \\
(1 - \tau) f'[k] = \rho + \delta (\ast \text{ LR willingness to supply it } \ast)
$$

$$
\text{signconditions} = \\
\{ \delta > 0, \rho > 0, k_1 > 0, k_2 > 0, 0 \leq \tau_1 < \tau_2 < 1, \text{SameSign}[f'[k_2] - f'[k_1], k_1 - k_2], \\
(* \text{ concave production } *) f'[k_1] (k_1 - k_2) < f[k_1] - f[k_2] < f'[k_2] (k_1 - k_2) \forall k_1 = k_2, \\
\text{SameSign}[\text{labor income}[k_2] - \text{labor income}[k_1], k_2 - k_1], \\
\text{SameSign}[f[k_2] - f[k_1], k_2 - k_1]\};
$$

$$
\text{revenue}[\tau, k] := \tau (f'[k] - \delta) k
$$

$$
\text{furmanratio} := \frac{\text{labor income}[k_2] - \text{labor income}[k_1]}{\text{revenue}[\tau_1, k_1] - \text{revenue}[\tau_2, k_2]}
$$

Interesting but not necessary assumptions

$$
\text{elasticcapitaldemand} = (k_2 f'[k_2] - k_1 f'[k_1]) (k_2 - k_1) \geq 0;
$$

$$
\text{wrongsideoflaffercurve} = (\text{revenue}[\tau_2, k_2] - \text{revenue}[\tau_1, k_1]) (\tau_2 - \tau_1) \leq 0;
$$

Results

Taxation reduces the stock capital and the amount of labor income

$$
\text{TheoryGuru}[[\text{lr capitalequilibrium}[\tau_1, k_1], \text{lr capitalequilibrium}[\tau_2, k_2], \\
\text{Most}@\text{signconditions}], \\
k_2 \prec k_1 \land \text{labor income}[k_1] > \text{labor income}[k_2]]
$$

Out[7] = True

Taxation reduces labor income more than it increases revenue

$$
\text{TheoryGuru}[[\text{lr capitalequilibrium}[\tau_1, k_1], \text{lr capitalequilibrium}[\tau_2, k_2], \\
\text{Most}@\text{signconditions}], \\
\text{revenue}[\tau_1, k_1] + \text{labor income}[k_1] > \text{revenue}[\tau_2, k_2] + \text{labor income}[k_2]]
$$

Out[8] = True
Either the Furman ratio exceeds one or the tax is reducing revenue

\[
\text{furmanratio} > 1 \\
\lor \\
\text{wrongsideoflaffercurve}
\]

\[
\text{furmanratio} < 0
\]