A Local Maximum of a Concave Function is a Global Maximum

TheoryGuru applications

(c) Copyright 2016 by JMJ Economics

Load Economicreasoning package only if it is not already loaded

If[Length@Names["PLTools`*"] < 10, Get["http://economicreasoning.com"]]

Setup

```
fisaconcavefunction = 0 \le \lambda \le 1 \Rightarrow (1 - \lambda) f[x] + \lambda f[y] \le f[(1 - \lambda) x + \lambda y];
(* for any x and y and \lambda *)
xachieveslocalmax = 0 < \lambda \le \epsilon[y] < 1 \&\& f[x] \ge f[(1 - \lambda) x + \lambda y] (*
x is any allocation.
y is any allocation not local to x.
\epsilon[y] is the radius bounding what is local to x *);
xachievesglobalmax = f[x] \ge f[y];
```

Result on Local vs Global Maximum

```
TheoryGuru[{fisaconcavefunction, xachieveslocalmax},
xachievesglobalmax]
True
Proof is from Beck (2014, Section 8.1), and many others.
```

Variable interpretations

x and y are not necessarily real numbers

TheoryGuru[{fisaconcavefunction, xachieveslocalmax}, xachievesglobalmax] True Column@MostRecentAssumption MostRecentHypothesis $0 > \lambda | | \lambda > 1 | | \lambda f[]] + (1 - \lambda) f[]] \le f[\lambda] + (1 - \lambda)$ $f[]] \ge f[\lambda] + (1 - \lambda)]]$ $0 < \lambda$ $\in []] > f[\lambda]] = f[\lambda]] = f[\lambda]] = f[\lambda]] = f[\lambda]]$

This model only says that λ , f[x], f[y], $f[\lambda x+(1-\lambda)y]$, $\epsilon[y]$ are real numbers because those five appear as part of inequalities.

x and *y* appear in the model only as arguments of *f* and therefore could be vectors, flags, an abstract object, etc. It is up to the user to ensure that convex combinations of *x* and *y* are meaningful.

TheoryGuru only "knows" that f[x], f[y], and $f[\lambda x+(1-\lambda)y]$ are potentially distinct real numbers because the arguments of f are different. e.g., it automatically assumes that f[x] == f[x] but not that f[x] == f[y].

Setup for Unique Maximum

| ≥ f[**____**]}

Strict concavity references equality. If x and y are, say, vectors rather than scalars, then == should not be used because TheoryGuru interprets the arguments of == as real numbers (e.g., by having the assumption x == y, then x and y are automatically interpreted as real numbers).

Here I define my own vector equality function SameVector (you could name it whatever you want), which I interpret as mapping pairs of vector to a Boolean according to whether the two vectors are the same.

```
Remove [x, y]

fisastrictlyconcavefunction = (Not@SameVector [x, y] \land 0 < \lambda < 1) \Rightarrow

(1 - \lambda) f[x] + \lambda f[y] < f[(1 - \lambda) x + \lambda y]; (* for any x and y and \lambda *)

xachievesglobalmax = f[x] \geq f[(1 - \lambda) x + \lambday];
```

```
yachievesglobalmax = f[y] \ge f[(1 - \lambda) x + \lambda y];
```

Result: the Global Maximum of a Strictly Concave Function is Unique

```
TheoryGuru[\{0 < \lambda < 1,
```

fisastrictlyconcavefunction, xachievesglobalmax, yachievesglobalmax},

```
SameVector[x, y]]
```

True

```
TheoryGuru[{0 < λ < 1,
    fisastrictlyconcavefunction, xachievesglobalmax},</pre>
```

SameVector[x, y] v Not@yachievesglobalmax]

True

Proof is from Beck (2014, Section 8.1), and many others.

Use the TheoryBooleans command to see which variable was (variables were) automatically recognized as Booleans.

TheoryBooleans

```
{SameVector[x, y]}
```

Variable interpretations